рефераты курсовые

Методическое руководство по расчету машины постоянного тока (МПТ)

работы.

Высота сердечника станины

[pic] (5.6)

Длина станины lст принимается равной длине якоря для машин с

шихтованной станиной и lст = l0 + (3 ( 5) мм для машин с отъёмными

полюсами. Для станин из литой стали Kз.с = 1(0.

После расчёта указанных размеров в

масштабе рисуют эскиз магнитной цепи

машины( по которому определяют длину

отдельных участков магнитной цепи (рис.

4).

29. Расчёт МДС машины постоянного тока.

МДС воздушного зазора

[pic]. (5.7)

МДС зубцовой зоны рассчитывается исходя из предположения(что весь

магнитный поток зубцового деления проходит через зубец. Если при этом

использованы пазы прямоугольной формы( то ширина зубцов оказывается

переменной и магнитная индукция в различных сечениях различна. В этом

случае расчёт МДС производится для трёх различных сечений зубца (

максимального( среднего и минимального:

[pic] (5.8)

[pic] (5.9)

[pic] (5.10)

Рассчитав значения магнитных индукций( по кривым намагничивания

выбранного сорта электротехнической стали (прилож., табл. 5 ( 13)

определяют соответствующие значения напряжённостей магнитного поля [pic](

[pic] ( [pic].

При расчёте МДС зубцов необходимо скорректировать их ширину таким

образом( чтобы максимальная величина магнитной индукции [pic]не превышала

1(8 Тл.

МДС зубцовой зоны определяется по формуле Симпсона:

[pic] (5.11)

Здесь принято( что высота зубца равна высоте паза.

Для машин малой мощности чаще всего используются пазы овальной или

трапецеидальной формы. В этом случае ширина зубца во всех сечениях

одинакова и расчёт значительно упрощается( так как магнитная индукция и

напряжённость магнитного поля в любом сечении зубца оказываются

одинаковыми:

[pic] (5.12)

AWZ = 2 HZ hп. (5.13)

МДС сердечника якоря. Уточнённое значение магнитной индукции в

сердечнике якоря

[pic] (5.14)

По рассчитанному значению магнитной индукции и кривой намагничивания

электротехнической стали определяется величина напряжённости магнитного

поля в спинке якоря и МДС этого участка:

AWa = Ha La( (5.15)

где средняя длина магнитной силовой линии

[pic] (5.16)

Величина магнитной индукции в сердечнике полюса уточняется по

выражению:

[pic] (5.17)

По кривой намагничивания материала полюсов и полученному значению

магнитной индукции определяется напряжённость магнитного поля и

рассчитывается величина МДС полюсов машины:

AWпл = 2 Hпл hпл. (5.18)

МДС станины. Магнитная индукция в станине

[pic] (5.19)

Средняя длина магнитной силовой линии в станине

[pic] (5.20)

По рассчитанному значению магнитной индукции Вст и кривой

намагничивания материала станины определяется напряжённость магнитного поля

Hст и соответствующая МДС:

AWст = Hст Lст. (5.21)

Если полюса выполнены отъёмными( то между станиной и сердечником

полюса существует воздушный зазор (ст = (0(035 (0(05) мм. В этом случае

необходимо определить МДС этого зазора:

[pic] (5.22)

Результирующая МДС машины на пару полюсов в режиме холостого хода

AWв = AW( + AWz + AWa + AWпл + AWст + AW(ст. (5.23)

30. Характеристика холостого хода (х.х.х) МПТ ( это зависимость ЭДС

обмотки якоря от МДС возбуждения (или тока возбуждения) при

неизменной частоте вращения и отсутствии тока якоря.

Расчёт х.х.х производится в такой последовательности:

- задаются произвольными значениями ЭДС якорной обмотки Е;

- рассчитываются соответствующие значения магнитного потока

[pic] ; (5.24)

- рассчитываются соответствующие значения магнитной индукции в

воздушном зазоре с использованием выражения (2.1);

- рассчитываются значения МДС для всех участков магнитной цепи и

суммарная МДС возбуждения на пару полюсов в соответствии с выражениями

п.29.

Производимые расчёты сводятся в таблицу (табл. 3( по данным которой

строится зависимость Е = f(AWв) ( х.х.х.).

31. МДС реакции якоря. При работе МПТ под нагрузкой по обмотке якоря

протекает ток и вокруг проводников обмотки создаётся магнитное

поле( называемое полем якоря. Рабочие характеристики МПТ

определяются результирующим магнитным полем в зазоре машины( т.е.

зависят и от поля якоря.

Воздействие магнитного поля якоря на основное поле машины( создаваемое

обмоткой возбуждения( называют реакцией якоря.

Для учёта магнитного поля якоря его МДС представляют в виде суммы двух

составляющих МДС поперечной и продольной реакции якоря.

Таблица 3

Расчёт характеристики холостого хода МПТ

|Величина |ЭДС якоря |

| |0(5 Е|0(8 Е|1(0 Е|1(1 Е|1(2 |1(3 Е|

| | | | | |Е | |

|Магнитный поток Фо( Вб | | | | | | |

|Магнитная индукция в воздушном | | | | | | |

|зазоре В(( Тл | | | | | | |

|Магнитная индукция в зубцах | | | | | | |

|якоря Вz( Тл | | | | | | |

|Магнитная индукция в спинке | | | | | | |

|якоря Ba( Тл | | | | | | |

|Магнитная индукция в сердечнике| | | | | | |

|полюса Bпл( Тл | | | | | | |

|Магнитная индукция в станине | | | | | | |

|Вст( Тл | | | | | | |

|Магнитная индукция в зазоре | | | | | | |

|между полюсом и станиной В(ст(| | | | | | |

|Тл | | | | | | |

|МДС воздушного зазора AW(( А | | | | | | |

|МДС зубцовой зоны AWz( А | | | | | | |

|МДС спинки якоря AWa (А | | | | | | |

|МДС сердечника полюса AWпл( А | | | | | | |

|МДС станины AWст( А | | | | | | |

|МДС зазора между станиной и | | | | | | |

|полюсом AW(ст( А | | | | | | |

|Суммарная МДС на пару полюсов: | | | | | | |

|AWв = ( AW( А | | | | | | |

Кроме того( на магнитное поле машины оказывают действие коммутационные

токи( протекающие в секциях якоря при переключении их из одной параллельной

ветви в другую. МДС коммутационных токов проявляется при замедленной или

ускоренной коммутации и носит продольный характер.

Поперечная МДС при ненасыщенной машине искажает магнитное поле, не

изменяя его величины. При насыщении машины МДС поперечной реакции якоря

ослабляет магнитное поле.

Поскольку МПТ работают( как правило( с той или иной степенью

насыщения( можно считать( что поперечная реакция якоря имеет

размагничивающий характер независимо от режима работы МПТ (двигательный или

генераторный).

При установке щёток строго на линии геометрической нейтрали продольная

МДС якоря теоретически равна нулю. Однако в реальных машинах установить

щётки на линии геометрической нейтрали не удаётся; они оказываются

смещёнными по ходу вращения машины. Вследствие этого появляется

незначительная продольная МДС( которая( как правило( носит намагничивающий

характер в двигателях и размагничивающий в генераторах. Процесс коммутации

в МПТ без добавочных полюсов оказывается замедленным( коммутационная МДС

носит продольный характер( т.е. намагничивает машину в режиме двигателя и

размагничивает в режиме генератора. Поскольку обмотка возбуждения должна

скомпенсировать поле реакции якоря(то МДС реакции якоря рассчитывается

следующим образом:

для двигателей:

AWR = AWаq ( AWad ( АWк, (5.25)

для генераторов

AWR = AWаq + AWad +АWк( (5.26)

где AWаq ( МДС поперечной реакции якоря;

AWad ( МДС продольной реакции якоря;

АWк ( коммутационная МДС.

Так как поперечный магнитный поток замыкается через зубцовую зону и

воздушный зазор машины( для определения поперечной реакции якоря

используется переходная кривая намагничивания (рис. 5):

В( = f (AW( + AWz) / 2(

которая строится по данным табл. 3. На этой кривой по оси ординат

откладывается номинальная величина магнитной индукции в воздушном зазоре

(точка а) и определяется соответствующая номинальная МДС (точка б). Влево и

вправо от этой точки в масштабе МДС откладываются отрезки бв и бг(

изображающие МДС поперечной реакции якоря:

(бв( = (бг(= AS b0 / 2. (5.27)

Рис.5. Переходная характеристика машины постоянно-

го тока

Так как величины отрезков бв и бг пропорциональны величине расчётной

полюсной дуги( а ординаты пропорциональны магнитной индукции( то площади

криволинейных треугольников аде и аgк представляют соответственно

уменьшение магнитного потока от реакции якоря под одним краем полюса и его

возрастание ( под другим. Разница площадей этих треугольников определяет

уменьшение магнитного потока машины вследствие действия поперечной реакции

якоря. Для компенсации этого размагничивающего действия необходимо

увеличить МДС обмотки возбуждения на определённую величину( которая

определяется следующим образом. Прямоугольник сдвигается вправо таким

образом, чтобы площади полученных криволинейных треугольников амf и аpn

стали равными. Тогда величина МДС на пару полюсов( компенсирующая

поперечную реакцию якоря( определяется выражением

AWaq = 2 mn.

Эта величина может быть найдена и другим способом. Выражая площади

криволинейных треугольников и приращений потоков по формуле Симпсона и

приравнивая полученные выражения( можно определить величину МДС поперечной

реакции якоря:

[pic]. (5.28)

МДС продольной реакции якоря зависит от сдвига щёток с линии

геометрической нейтрали и определяется выражением

AWаd = 2 b( AS( (5.29)

где b( ( сдвиг щёток с линии геометрической нейтрали вследствие неточности

изготовления машины, b( = 0(15 ( 0(3 мм.

Продольная коммутационная МДС( возникающая при замедленной коммутации(

определяется величиной коммутирующего тока( индуктивностью коммутируемых

секций( переходным сопротивлением щёток и угловой скоростью якоря. Величина

коммутационной МДС при номинальном токе машины и номинальной частоте

вращения может быть приближённо рассчитана по следующей формуле:

[pic] (5.30)

где bк ( ширина коллекторной пластины;

ASн ( линейная токовая нагрузка при номинальном токе якоря;

Кк ( коэффициент, учитывающий падение напряжения в щётках

[pic] (5.31)

Полная МДС возбуждения МПТ при нагрузке

AW(НАГР = AW( + AWz + AWa + AWпл + AWст + [pic] + AWR( (5.32)

Для двигателей и генераторов параллельного возбуждения вначале

определяется ЭДС якоря для электродвигателей

Е = U ( (Ua ( (Uщ (5.33)

и для генераторов

Е = U +(Ua + (Uщ.

(5.34)

По кривой холостого хода определяется результирующая МДС ( AW’(НАГР

соответствующая найденному значению ЭДС( после чего рассчитывается полная

МДС с учётом реакции якоря:

AW(НАГР= AW(НАГР+ AWR. (5.35)

6. РАСЧЁТ ОБМОТКИ ВОЗБУЖДЕНИЯ

6.1. Электродвигатель последовательного возбуждения

32. Число витков обмотки возбуждения на один полюс

[pic] (6.1)

33. Предварительное сечение обмоточного провода для обмотки

возбуждения

Sв = (a / jв ( (6.2)

где jВ ( плотность тока в обмотке возбуждения( выбираемая в зависимости от

номинального момента Мн по данным табл. 4.

Мн = 9(55 Рн (nн. (6.3)

Рассчитав сечение провода( выбирают номинальное сечение и диаметр

провода в соответствии с ГОСТом( а затем уточняют реальную величину

плотности тока возбуждения:

jв = (a / Sв .

(6.4)

34. Сопротивление обмотки возбуждения в нагретом состоянии

[pic] (6.5)

где lср ( средняя длина витка обмотки возбуждения( которая определяется по

эскизу расположения обмотки на сердечнике полюса.При неотъёмных полюсах

машины среднюю длину витка необходимо увеличить на величину (b0 ( bпл)( с

тем чтобы была возможность надеть катушку обмотки возбуждения на сердечник

полюса через полюсный наконечник.

35. Падение напряжения в обмотке возбуждения

(Uв = Ia Rв . (6.6)

36. Величина ЭДС якоря двигателя последовательного возбуждения при

нагрузке

E = UH ( (Ua ( (Uщ ( (Uв. (6.7)

Таблица 4

Плотность тока в обмотке возбуждения МПТ малой мощности ((106 А/м2)

|Номинальный |Режим работ |Номинальный |Режим работ |

|момент Мн( | |момент Мн( | |

|Нм | |Нм | |

| |продолжите|кратковрем| |продолжите|кратковрем|

| |льный |енный | |льный |енный |

|Закрытое исполнение |

|0(01 |8(0 |16(0 |0(2 |4,6 |11,0 |

|0(02 |7(5 |15(0 |0(4 |4,3 |10,0 |

|0(03 |7(0 |14(2 |0(6 |4,0 |9,5 |

|0(04 |6(5 |13(5 |0(8 |3,8 |9,2 |

|0(05 |6(2 |12(7 |1(0 |3,5 |9,0 |

|0(06 |5(8 |12(2 |1(2 |3,4 |8,8 |

|0(07 |5(5 |11(7 |1(4 |3,2 |8,5 |

|0(08 |5(2 |11(3 |1(6 |3,0 |8,2 |

|0(09 |5(0 |11(2 |1(8 |2,8 |8,0 |

|0(1 |4(8 |11(0 |2(0 |2,7 |7,8 |

|Защищённое исполнение с вентилятором |

|0(01 |11(5 |21(5 |0(2 |9(4 |16(8 |

|0(02 |10(8 |20(8 |0(4 |9(0 |16(5 |

|0(03 |10(5 |20(0 |0(6 |8(4 |15(8 |

|0(04 |10(2 |19(5 |0(8 |8(0 |15(2 |

|0(05 |9(8 |19(0 |1(0 |7(6 |14(8 |

|0(06 |9(7 |18(6 |1(2 |7(2 |14(2 |

|0(07 |9(6 |18(1 |1(4 |7(0 |13(9 |

|0(08 |9(5 |17(7 |1(6 |6(8 |13(6 |

|0(09 |9(5 |17(2 |1(8 |6(6 |13(2 |

|0(1 |9(5 |17(0 |2(0 |6(5 |13(0 |

Полученная величина ЭДС не должна отличаться от предварительно выбранного

значения более чем на 3%. При большей разнице необходимо скорректи-

ровать число витков обмотки возбуждения. Для этого определяют МДС обмотки

возбуждения по характеристике холостого хода и найденному значению ЭДС(

прибавляют МДС реакции якоря при номинальной нагрузке( уточняют число

витков обмотки возбуждения( её сопротивление( падение напряжения и новое

значение ЭДС машины Ea.

37. Площадь окна для размещения обмотки возбуждения

[pic] (6.8)

где fо ( технологический коэффициент( учитывающий промежутки между

проводниками и изоляцию провода, fо = 0(8 ( 0(84.

Фактическая площадь окна для обмотки возбуждения должна быть увеличена

на 10 ( 20 % для учёта возможных неточностей намотки.

Исходя из полученного значения площади окна уточняют высоту сердечника

полюса и определяют ширину стороны катушки возбуждения с таким расчётом(

чтобы обмотка возбуждения свободно размещалась в окне между станиной и

полюсным наконечником.

6.2. МПТ с независимым возбуждением

Расчёт обмотки возбуждения в этом случае производится в такой

последовательности:

38. Задаются величиной тока возбуждения

(в ( (5 ( 10)% (a.

Большие значения тока принимаются для машин меньшей мощности.

Исходя из режима работы МПТ и её исполнения( по данным табл. 4

выбирается величина допустимой плотности тока в обмотке возбуждения jв.

После этого рассчитывают сечение провода обмотки возбуждения по выражению

S(в = (в / jв . (6.9)

По найденному значению S(в выбирается марка( сечение и диаметр провода

обмотки возбуждения( соответствующего ГОСТу.

39. Зная МДС возбуждения для номинального режима работы AW(НАГР(

рассчитывают число витков обмотки возбуждения на один полюс:

[pic] (6.10)

40. По выражению (6.5) рассчитывается сопротивление обмотки возбуждения

в нагретом состоянии( а исходя из номинального напряжения сети (

уточнённые значения тока возбуждения и его плотности( которая

должна быть близкой к принятому ранее значению.

Площадь окна( необходимую для размещения обмотки возбуждения(

рассчитывают так же( как и для машин с последовательным возбуждением.

7. ПОТЕРИ И КПД МАШИНЫ ПОСТОЯННОГО ТОКА

В МПТ различают следующие виды потерь:

( потери в обмотках якоря и возбуждения(

( потери в щётках;

( потери в стали якоря;

( механические потери;

( добавочные потери.

41. Потери в обмотках якоря и возбуждения рассчитываются следующим

образом:

для МПТ с последовательным возбуждением

(Рма = (а2 Ra( (7.1)

(Рмв = (а2 Rв; (7.2)

для машин с параллельным возбуждением

(Рмв = UH (в.

(7.3)

42. Потери в щётках

(Рщ = (Uщ (а . (7.4)

43. Потери в стали якоря включают в себя потери в сердечнике якоря и

потери в зубцах якоря.

Масса стали якоря

Gс.а = 7800 (( (Dа (2 hп)2 lо( ( 4. (7.5)

Масса зубцов якоря

Gс.z = 7800 Z bZ.CP hП lo.

(7.6)

Потери в стали сердечника якоря

(Pс.a = pуд Bа2 f1,3 Gс.а.

(7.7)

Потери в зубцах якоря

(Pс.z = pуд Bz2 f1,3 G с.z.

(7.8)

В этих выражениях удельные потери для данного сорта стали принимаются

увеличенными в 1,5 ( 1,8 раза.

Потери в стали статора

(Pс = (Pс.a + (P с.z. (7.9)

44. Полные механические потери включают в себя потери на трение щеток о

коллектор, потери на трение в шарикоподшипниках и потери на трение

о воздух.

Потери на трение щёток о коллектор

(Ртр.щ = 9(81 Ктр Рщ Sщ Vк( (7.10)

где Ктр ( коэффициент трения щёток о коллектор( Ктр = 0(2 ( 0(25.

Рщ ( удельное нажатие щёток( Рщ = 1(96 ( 2(35 Н/м2 для угольных и

угольно-графитовых щёток; Рщ = 2(0 ( 4(0 Н/м2 для

электрографитированных щёток; Рщ = 1(5 ( 2(0 Н/м2 для медно-

графитовых щёток; Рщ = 1(7 ( 2(2 Н/м2 для бронзо-графитовых щёток.

Sщ ( поверхность всех щёток;

Vк ( окружная скорость коллектора.

Потери на трение в шарикоподшипниках

(Ртр.под = Кш Gа n ( 10-3( (7.11)

Для машин малой мощности с шарикоподшипниками Кш = 1 ( 3( Большие

значения относятся к машинам меньшей мощности.

Масса якоря Gа может быть рассчитана по приближённой формуле

Gа = 1000 ( (Da2 lo (a + Dк2 lк (к) ( 4. (7.12)

В этом выражении средняя объёмная масса якоря (a = 7800 кг/м3 ( объемная

масса коллектора (K = 8900 кг/м3.

Потери на трение о воздух могут быть рассчитаны для машин малой

мощности с частотой вращения до 12000 об/мин по формуле

(Ртр.в = 2 Da3 n3 lо 10-6( (7.13)

при n ( 12000 об/мин

(Ртр.в = 0(3 Da5 (1 + lo / Da) n3 ( 10-6.

(7.14)

Полные механические потери

(Рмех = (Ртр.щ + (Ртр.под + (Ртр.в.

(7.15)

45. Полные потери в машине

(Р( = (o ((Рма + (Рмв + (Рщ + (Рс + (Рмех)( (7.16)

где коэффициент (o = 1(1 ( 1(2 учитывает добавочные потери.

46. При номинальной нагрузке КПД для двигателя

[pic] (7.17)

КПД для генератора

[pic] (7.18)

В выражениях (7.17), (7.18) (Н = (а ( для электродвигателей

последовательного возбуждения; (Н = (а + (В ( для электродвигателей

параллельного возбуждения; (Н = (а ( (В ( для генераторов параллельного

возбуждения.

Если номинальная мощность электродвигателя

РН = UH (Н ( (Р(

отличается от заданной( то необходимо пересчитать величину номинального

тока якоря:

(а = 0(5 А ( (0(25 А2 ( В).

(7.19)

Для электродвигателей последовательного возбуждения

[pic] (7.20)

для электродвигателей параллельного возбуждения

[pic]. (7.21)

После определения нового значения тока необходимо пересчитать величины

потерь (Рма( (РМВ( (РЩ( (Р(( а также рассчитать новое значение КПД

двигателя.

47. Рабочие характеристики двигателя постоянного тока. Рабочими

характеристиками называются зависимости ( = f(M)( P1 = f(M)( P2

= f(M)( n = f(M)( ( = f(M).

Расчёт рабочих характеристик рационально вести в виде таблицы(

заполняемой по мере вычисления отдельных величин.

Величина электромагнитного момента рассчитывается по выражению

[pic] (7.22)

Заполнение таблицы следует начинать с номинального значения тока (H.

Суммарную величину реакции якоря принимают пропорциональной току якоря( а

величину магнитного потока определяют по кривой намагничивания для каждого

значения тока якоря и результирующей МДС с учётом реакции якоря.

По данным табл. 5 строятся рабочие характеристики электродвигателя в

общих координатных осях (рис. 6).

Таблица 5

Расчёт рабочих характеристик двигателя постоянного тока

|Рассчитываемая величина |Потребляемый из сети или отдаваемый |

| |в сеть ток |

| |0,5 (H |0,8 (H |1(0 (H |1,2 (H |

|Ток возбуждения (В ( А | | | | |

|Ток якоря (а( А | | | | |

|Падение напряжения (Ua( В | | | | |

|Падение напряжения (Uв( В | | | | |

|Падение напряжения (UЩ( В | | | | |

|Падение напряжения (U( В | | | | |

|ЭДС якоря Еа( В | | | | |

|МДС возбуждения( А | | | | |

|МДС реакции якоря( А | | | | |

|МДС машины под нагрузкой( А | | | | |

|Магнитный поток( Вб | | | | |

|Частота вращения( об/мин | | | | |

|Потери в якоре( Вт | | | | |

|Потери возбуждения( Вт | | | | |

|Потери в щётках( Вт | | | | |

|Потери в стали( Вт | | | | |

|Механические потери( Вт | | | | |

|Суммарные потери( Вт | | | | |

|Потребляемая мощность Р1( Вт | | | | |

|Полезная мощность Р2( Вт | | | | |

|КПД двигателя | | | | |

|Момент двигателя( Нм | | | | |

48. Для генератора постоянного тока параллельного возбуждения строится

внешняя характеристика ( зависимость напряжения от тока нагрузки U

= f (() при RB = const.

Для построения внешней характеристики генератора параллельного

возбуждения необходимо иметь характеристику холостого хода Е = f ((B)(

которая строится по кривой Е = f (AWB) при известном числе витков обмотки

возбуждения. Совместно с характеристикой холостого хода в тех же осях

строится вольт-амперная характеристика цепи возбуждения UB = (B RB.

В точке пересечения этих характеристик (рис.7) имеем режим холостого

хода( когда ток якоря (a равен нулю( а напряжение равно напряжению

холостого хода U0. Указанная точка является первой точкой внешней

характеристики генератора. С ростом тока якоря возрастает падение

напряжения в якорной цепи (Ua = (a Ra + (Uщ и МДС реакции якоря. Эти

величины являются катетами прямоугольного треугольника (АВС( называемого

характеристическим. Одна из его вершин (точка А) лежит на характеристике

холостого хода( а другая вершина (точка С) ( на вольт-амперной

характеристике цепи возбуждения и( кроме того( определяет величину

напряжения генератора при заданном токе якоря.

[pic]

Рис.6. Рабочие характеристики двигателя последователь-

ного возбуждения

[pic]

Рис.7. Внешняя характеристика генератора параллельного

возбуждения

Внешнюю характеристику строят таким образом:

( для номинального тока якоря определяется падение напряжения в

якорной цепи (Ua = (a Ra + (UЩ и ток возбуждения( эквивалентный реакции

якоря: AWR / (2 WB)( т.е. катеты характеристического треугольника(

( полученный треугольник размещают между кривыми холостого хода и

вольт-амперной характеристикой так( чтобы его вершины лежали на этих

кривых;

( откладывая по координатной оси токов якоря его номинальную величину(

а по оси ординат ( величину напряжения( равную ординате нижней вершины

треугольника( получают следующую точку внешней характеристики(

соответствующую номинальному току;

( точки внешней характеристики( соответствующие другим значениям тока,

находят аналогичным образом при построении характеристических

треугольников( стороны которых пропорциональны данным значениям токов.

8. УПРОЩЕННЫЙ ТЕПЛОВОЙ РАСЧЁТ МАШИНЫ

ПОСТОЯННОГО ТОКА МАЛОЙ МОЩНОСТИ

Потери( выделяемые в элементах электрических машин( превращаются в

тепло( которое вызывает их нагрев и рассеивается в окружающее пространство.

По мере увеличения температуры деталей машины увеличивается их теплоотдача(

в результате чего температура не возрастает до бесконечности( а принимает

установившееся значение. В этом случае выделившееся в машине тепло

полностью отдаётся в окружающую среду. Величина установившейся температуры

определяется мощностью потерь( габаритами машины и должна соответствовать

температурной устойчивости изоляции. Поскольку точный учёт всех факторов

нагрева и условий теплоотдачи в машинах малой мощности затруднителен( то

расчёт превышений температуры элементов машины над окружающей средой

производится приближёнными методами.

49. Превышение температуры якоря. При расчётах считается( что всё

тепло( выделяющееся в обмотке якоря( передаётся через пазовую изоляцию

стали якоря. Поэтому суммарные потери якоря( определяемые потерями в

обмотке( стали якоря и потерями от трения о воздух( снимаются охлаждающим

воздухом с его поверхности.

Среднее превышение температуры обмотки якоря при установившемся

режиме определяется выражением

[pic]( (8.1)

здесь (a ( результирующий коэффициент теплоотдачи наружной поверхности

якоря( Вт/(м2( К)(

(a = (( (1 + 01 Va)( (8.2)

(’ ( коэффициент теплоотдачи наружной поверхности неподвижного

якоря( для машин закрытого исполнения (( = 14 ( 18 Вт/(м2( К); для машин

защищённого исполнения с вентиляцией (( = 36 ( 44 Вт/(м2( К);

bZ1 ( ширина вершины зубца якоря;

( ( общая толщина изоляции от меди до стенки паза(

( = (1 +(2( (8.3)

где (1 ( толщина пазовой изоляции плюс односторонняя толщина изоляции

проводника;

(2 ( эквивалентная межвитковая изоляция проводников в пазу(

[pic] ; (8.4)

здесь ma ( число проводников в ряду по средней ширине паза;

da.из ( диаметр изолированного проводника;

Kс ( коэффициент( определяемый выражением

Kс = 1 + 4 (da / da.из ( 0(4);

(8.5)

(( ( коэффициент теплопроводности междувитковой и пазовой

изоляции(

(( = (0(12 ( 0(13) Вт/(м (К);

П ( периметр паза;

wм.a ( удельные потери в меди обмотки якоря на единицу длины(

[pic] (8.6)

wс.a ( удельные потери в стали якоря на единицу его длины(

[pic] (8.7)

wТР.В ( удельные потери трения якоря о воздух на единицу длины якоря(

[pic] (8.8)

50. Превышение температуры коллектора. Полные потери в коллекторе

(РК = (РЩ + (РТР.Щ( (8.9)

Поверхность охлаждения коллектора

SК.ОХ = ( DК lК( (8.10)

Среднее превышение температуры коллектора над температурой окружающей

среды

[pic] (8.11)

где (к ( коэффициент теплоотдачи коллектора((к = 40 ( 70 Вт/(м2 ( К).

51. Превышение температуры обмотки возбуждения. Потери в одной катушке

обмотки возбуждения

wM.B = (PM.B / 2p. (8.12)

Поверхность охлаждения одной катушки обмотки возбуждения для машины с

отъёмными полюсами

SВ.ОХ = 2 (bПЛ + lПЛ + 4 (К) hК + 2 (bПЛ + 2 (К) (К(

(8.13)

для машины с шихтованной станиной

SВ.ОХ = (b0 + bПЛ + 2lПЛ + 8 (К) hК + (b0 + bПЛ + 4 (К) (К.

(8.14)

В этих выражениях: bПЛ и lПЛ ( ширина и длина сердечника полюса;

(К и hК ( ширина и высота катушки обмотки возбуждения.

Среднее превышение температуры обмотки над температурой окружающей

среды

[pic] (8.15)

где (0( ( коэффициент теплоотдачи катушек обмотки возбуждения, для машин

закрытого исполнения (0( = 26 ( 30 Вт/(м2 ( К); для машин

защищённого исполнения с вентиляцией (0( = 52 ( 60` Вт/(м2 ( К).

Рассчитанные значения превышений температуры элементов электрических

машин над температурой окружающей среды ((ОКР = 400 С) не должны превышать

допустимых для выбранного класса изоляции.

9. РАСЧЁТ ПОСТОЯННЫХ МАГНИТОВ ДЛЯ

ВОЗБУЖДЕНИЯ МАШИН ПОСТОЯННОГО ТОКА

9.1. Кривые размагничивания постоянных магнитов

В МПТ малой мощности перспективно использование постоянных магнитов(

позволяющих уменьшить габариты машин и увеличить их КПД.

Расчёт МПТ с постоянными магнитами производится теми же методами( что

и машин с обмотками возбуждения. Особенностью расчёта является правильный

выбор габаритов магнита при известных его параметрах.

Постоянный магнит характеризуется кривой размагничивания( снимаемой

для образцов с замкнутым магнитопроводом, вид которой представлен на рис.8.

При отсутствии размагничивания режим работы магнита определяется

положением точки 1 (Вr( 0) на кривой размагничивания. Значение магнитной

индукции в этой точке называется остаточной индукцией Вr. Максимальная

напряжённость магнитного поля( необходимая для размагничивания магнита(

называется коэрцитивной силой HC( а режим работы магнита при этом

определён положением точки 2(0( HC). Если постоянный магнит имеет

воздушный зазор( то магнитная индукция в зазоре и самом магните

оказывается меньше остаточной( т.к. его МДС распреде-

ляется между зазором и сердечником магнита. Наличие воздушного зазора

эквивалентно размагничивающему действию обмотки с током. Рабочая точка

постоянного магнита с зазором оказывается смещённой( занимая положение

точки 3 на кривой размагничивания.

При повторном намагничивании в силу необратимых процессов(

произошедших в магните( намагничивание происходит не по основной кривой( а

по частному циклу (точки 3,4). Для расчётов частные циклы заменяются прямой

линией( называемой линией возврата (ЛВ). Характер процессов

размагничивания магнита определяется величиной МДС размагничивания. При

малых значениях МДС размагничивание происходит по линии возврата до точки

3. Если же МДС значительна( то процесс размагничивания вначале происходит

по линии возврата до точки 3( а затем ( по основной кривой размагничивания

(точка 5). Последующие режимы намагничивания в этом случае будут

происходить по новой линии возврата( проходящей через точку 5.

Магнитная цепь МПТ рассчитывается так( чтобы рабочая точка лежала на

середине прямой возврата( а возможные колебания МДС не выводили её за

пределы данной линии возврата.

Наклон линии возврата определяется магнитной проницаемостью возврата

(В = (В((Н( (9.1)

Значения (В с достаточной точностью определяются наклоном касательной к

кривой размагничивания в точке (Вr, 0).

Различным точкам на кривой размагничивания соответствуют различные

величины удельной энергии магнита:

WM = 0(5 B H. (9.2)

Зависимость удельной энергии от напряжённости магнита представлена на

рис.9. Как видно из рисунка( при некотором значении напряжённости Но

наблюдается максимум удельной энергии в точке А с координатами (Во( Но).

Магнитная система должна проектироваться так( чтобы рабочий режим магнита

находился вблизи точки максимума.

Для расчётов магнитных систем с постоянными магнитами необходимо

иметь аналитическое описание кривой размагничивания. Наиболее часто эта

зависимость представляется в виде гиперболы:

[pic]. (9.3)

В этом выражении коэффициент а зависит от формы кривой размагничивания и

выражается через коэффициент формы ( следующим образом:

[pic] (9.4)

где

[pic]

(9.5)

[pic]

Рис.9. Удельная энергия постоянного магнита

Во и Но ( координаты точки( соответствующие максимуму энергии

постоянного магнита на кривой размагничивания.

Величина коэффициента формы кривой размагничивания постоянных магнитов

0(25 ( ( ( 0(9.

При ( = 0(25 коэффициент а = 0 и гипербола вырождается в прямую

[pic]( (9.6)

[pic]

показанную на рис. 10 (кривая 1).

При ( = 1 коэффициент а = 1 и уравнение гиперболы принимает вид

В = Вr(

т.е. имеем горизонтальную прямую( касательную к кривой размагничивания.

При ( = 0(5 коэффициент а = 0(8 и гипербола становится близкой к

окружности (кривая 3 на рис.10).

Коэффициент формы кривой размагничивания определяется материалом

постоянного магнита( и для бариевых магнитов ( = 0(316 (

( 0(390( для метоллокерамики ( = 0(36 ( 0(64( для сплавов ЮНДК ( = 0(5 (

0(9, для магнитов на основе редкоземельных элементов ( = 0(27 ( 0(3.

9.2. Совместная работа постоянных магнитов

с внешней магнитной цепью

Простейшая магнитная цепь состоит из постоянного магнита( двух

Страницы: 1, 2, 3


© 2010 Рефераты