«Основы автоматизированного проектирования сложных объектов и систем»
2006
Задание
Вариант 50.3
Рассчитать и спроектировать привод к бегунам.
Режим нагружения:
Время в часах с использованием мощности
t1
P1
t2
P2
t3
P3
3000
P
5000
0.8P
4000
0.3P
Вариант задания:
№
Т, Н*м
n, мин-1
nc, мин-1
Тип соединительной муфты
Тип передачи на выходном валу
Редуктор установить на
23
120
153
1000
Упругая со звездочкой
Цепная U=1.4
Литой плите
Аннотация
В курсовом проекте по дисциплине “Основы автоматизированного проектирования сложных объектов и систем” произведено проектирование привода, то есть выбор электродвигателя, проектирование и проверочный расчет редуктора и его составных частей.
В пояснительной записке представлены проектировочные и проверочные расчеты, разработана общая структура пакета прикладных программ (ППП). Записка содержит стр. 1 страниц, 14 рисунков, 2 таблиц, приложения А, Б, В, Г.
Технический уровень всех отраслей народного хозяйства в значительной мере определяется уровнем развития машиностроения. На основе развития машиностроения осуществляется комплексная механизация и автоматизация производственных процессов в промышленности, строительстве, сельском хозяйстве, на транспорте.
Повышение эксплуатационных и качественных показателей, сокращение времени разработки и внедрения новых машин, повышение их надежности и долговечности при снижении стоимости - основные задачи конструкторов-машиностроителей. Большие возможности для совершенствования труда конструкторов дает широкое применение ЭВМ, позволяющее освободить конструкторов от нетворческих операций, оптимизировать конструкции, автоматизировать значительную часть процесса проектирования.
Проектирование по курсу «Детали машин» входит в учебные планы всех механических специальностей. Оно является завершающим этапом в цикле базовых общетехнических дисциплин: теоретическая механика, сопротивление материалов, материаловедение, взаимозаменяемость, метрология и стандартизация и др. Курсовой проект - первая самостоятельная конструкторская работа студента, в ходе которой он изучает практические принципы и методы проектирования.
Редуктором называется передача, установленная в отдельной закрытой коробке, называемой корпусом, и служащая для снижения угловой скорости и соответственно повышения вращающего момента на ведомом валу по сравнению с валом ведущим.
Установка передачи в отдельном корпусе гарантирует точность сборки, лучшую смазку её и соответственно более высокий КПД, меньший износ, а также защиту от попадания в неё пыли и грязи. Поэтому в данной ответственной установке применяется редуктор.
Подвод мощности от двигателя к редуктору осуществляется через муфту.
От муфты момент передаётся на входной вал (вал-шестерня), предназначенный для передачи вращающего момента.
Вал-шестерня входит в зацепление с колесом.
На выходе редуктора расположена однорядная цепная передача. Она состоит из расположенных на расстоянии друг от друга двух колес, называемых звёздочками, и охватывающей их цепи. Вращение ведущей звёздочки, расположенной на выходном валу, преобразуется во вращение ведомой звёздочки благодаря сцеплению цепи с зубьями звёздочек.
1 Проектные расчеты1.1 Общие сведенияДля приведения в движение исполнительных механизмов большинства машин используются приводы, состоящие из двигателей, систем механических передач и муфт, соединяющих отдельные валы. Таким образом, под приводом следует понимать устройство для приведение в действие рабочего механизма машины. Наибольшее распространение, благодаря простоте конструкции, достаточной надёжности, относительной дешевизне и высокому КПД получили механические приводы.
Приводы большей части машин допускают использование стандартных двигателей, муфт и механических передач. Механические приводы общего назначения классифицируются по числу и типу двигателей, а также по типу использующихся передач.
По числу двигателей приводы делятся на групповые, одно- и многодвигателевые.
Групповой привод служит для приведения в движение нескольких рабочих органов машины. Привод этого типа используется в некоторых металлообрабатывающих станках, в различных строительных и погрузочно-разгрузочных машинах. Групповой привод имеет большие габаритные размеры, сложную конструкцию и низкий КПД.
Однодвигателевый привод распространен наиболее широко, особенно в машинах с одним рабочим органом, приводимым в движение от одного двигателя.
Мнонгодвигателевый привод используется в сложных машинах, имеющих несколько рабочих органов или один рабочий орган, потребляющий большое количество энергии (например, конвейер большой длины). Такие приводы используются в подъёмно-транспортных машинах, сложных металлообрабатывающих станках и т.п.
По типу двигателя различаются приводы с электродвигателем, двигателями внутреннего сгорания, с паровыми и газовыми двигателями, гидро- и пневмодвигателями.
В состав механических приводов могут входить такие типы передач: зубчатые (цилиндрические и конические), червячные, передачи с промежуточной гибкой связью (ременные, цепные), передачи винт-гайка. Передачи в приводе могут быть как однотипными, так и комбинированными.
Общее передаточное число привода определяется отношением частоты (угловой скорости) вала двигателя к частоте(угловой скорости) приводного вала исполнительного механизма или рабочего органа машины:
1.2 Выбор электродвигателя
При выборе электродвигателя кроме синхронной частоты вращения и потребной мощности необходимо определиться с его исполнением, выбор которого зависит от типа и конструкции редуктора или коробки скоростей и условий компоновки привода.
Исходными данными на этом этапе проектирования привода служат принципиальная схема привода (с указанием всех передач, входящих в его состав); вращающий момент на выходном валу редуктора (коробки скоростей) ; частота вращения выходного вала ; синхронная частота электродвигателя . Расчет потребляемой мощности привода, кВт, выполняется по заданной нагрузке на выходном валу и частоте вращения выходного вала с учетом потерь мощности в приводе от вала электродвигателя до выходного вала редуктора:
По каталогу источника [2] с учетом синхронной частоты вращения вала двигателя nс = 1000 мин-1 и требуемой входной мощности Pвх = 2.06 кВт выбираем двигатель:
4А100L6, номинальная мощность P = 2,2 кВт, номинальная частота вращения n = 950 мин-1, отношение Тмакс/Тном = 2.2, диаметр вала двигателя dдв = 28 мм.
1.3 Кинематический расчет
Исходными данными при выполнении кинематического расчета кроме заданной кинематической схемы привода являются синхронная частота вращения вала электродвигателя и частота вращения выходного вала редуктора или коробки скоростей.
Кинематический расчет привода состоит из следующих основных частей: определение общего передаточного числа, разбивка общего и передаточного числа по ступеням, определение кинематической погрешности.
Общее передаточное число привода определяется как отношение частоты вращения вала электродвигателя к частоте вращения выходного вала редуктора (коробки скоростей):
Uр =
Расчет передаточных отношений быстроходной U12 и тихоходной U34 ступеней [1]:
U34 = 2,19;
Принимаем U34СТ=2,24
U12 = .= 2,77
Принимаем U12СТ=2,8
Фактическое передаточное число Uф:
Uф = U12ст * U34ст = 2,8 * 2,24 = 6,272
Относительное отклонение фактического передаточного числа от расчетного:
причем [у]H берется минимальным из [у]H1 и [у]H2. Kap = 8900 [1, табл. 2] - средний суммарный коэффициент при расчетах межосевого расстояния с использованием мощности.
98 мм.
Принимаем значение a из стандартного ряда [1, табл. 16] a = 100 мм.
Материал шпонок - чистотянутая сталь с МПа (ГОСТ 23360--78). Допускается применение другой стали соответствующей прочности. Часто это Ст. 6; стали 45, 50.
В общем машиностроении допускаемые напряжения на смятие принимают равными [см] = 80...150 МПа. При этом меньшие напряжения берут для чугунных ступиц.
В редукторах для шпонок из стали 45 принимают при непрерывном использовании редуктора с полной нагрузкой [см] = 50... 70 МПа; при среднем режиме работы [см] = 130... 180 МПа;
2.6.1 Соединение вал-муфта
По ГОСТ 23360 - 78 подбираем шпонку призматическую обыкновенную со следующим параметрами:
d = 22 мм, b = 6 мм, lp = 28 мм, h = 6 мм, hp = 2.8 мм.
Вращающий момент, передаваемый соединением, T = 20,5 H*м.
Напряжение смятия на рабочей грани шпонки:
Допускаемое напряжение ,
где [S] - принятый коэффициент запаса прочности, [S] = 2;
- предел текучести, для Ст.6 =320 МПа.
Условие устойчивости шпонки на срез:
Полученные значения напряжений меньше допускаемых. Следовательно, шпоночное соединение работоспособно с высокой степенью надежности.
2.6.2 Соединение вал-колесо (Z2)
По ГОСТ 23360 - 78 подбираем шпонку призматическую обыкновенную со следующим параметрами:
d = 36 мм, b = 10 мм, lp = 22 мм, h = 8 мм, hp = 3.3 мм.
Вращающий момент, передаваемый соединением, T = 56.3 H*м.
Напряжение смятия на рабочей грани шпонки:
Допускаемое напряжение ,
где [S] - принятый коэффициент запаса прочности, [S] = 2;
- предел текучести, для Ст.6 =320 МПа.
Условие устойчивости шпонки на срез:
Полученные значения напряжений меньше допускаемых. Следовательно, шпоночное соединение работоспособно с высокой степенью надежности.