Статистика в обработке материалов психологических исследований
Статистика в обработке материалов психологических исследований
Статистика в обработке материалов психологических исследований
Статистические методы применяются при обработке материалов психологических исследований для того, чтобы извлечь из тех коли-чественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации. В частности, в обработке данных, получаемых при испытаниях по психологиче-ской диагностике, это будет информация об индивидуально-психоло-гических особенностях испытуемых. Психологические исследования обычно строятся с опорой на количественные данные.
Вот пример.
К школьному психологу обратился шестиклассник Саша Ю. с прось-бой испытать его двигательный темп. Его очень интересовал баскетбол, и он собирался вступить в баскетбольную команду, а баскетболист, не-сомненно, должен иметь высокий двигательный темп. Психолог разра-ботал план небольшого исследования. Он начал с того, что попросил Сашу так быстро, как он только может, ставить точки в центре кружков, нарисованных на листке бумаги. За одну минуту мальчик поставил 137 то-чек. Насколько этот темп характерен для него? Чтобы установить это, психолог попросил Сашу повторить эту пробу 25 раз. Действительно, некоторые результаты превышали первоначально полученное число, но некоторые оказались и поменьше. Психолог просуммировал все полу-ченные за 25 проб результаты, а сумму разделил на 25 -- таким путем он получил среднее арифметическое по всем пробам. Это среднее ариф-метическое составило 141. Таков по этой пробе максимальный темп это-го мальчика. Можно ли считать этот темп высоким? Потребовался еще один шаг в исследовании. Психолог сформировал группу из 50 шести-классников, не отличающихся от Саши и друг от друга по возрасту более чем на полгода. С этими ребятами психолог также провел сначала по несколько тренировочных проб, чтобы получить надежные данные об их темпе, и, наконец, последнюю пробу для обработки.
Все эти данные в виде средних арифметических были построены в один порядковый ряд, который был разбит по десяткам (по децилям).
Сашины данные вошли в первый десяток с наиболее быстрыми резуль-татами. По этим количественным данным психолог сделал вывод о том, что мальчик обладает сравнительно высоким двигательным темпом, о чем и было ему сообщено.
Современная математическая статистика представляет собой боль-шую и сложную систему знаний. Нельзя рассчитывать на то, что каж-дый психолог овладеет этими знаниями. Между тем статистика нужна психологу постоянно в его повседневной работе. Специалисты-стати-стики разработали целый комплекс простых методов, которые совер-шенно доступны любому человеку, не забывшему то, что он выучил еще в средней школе.
В зависимости от требований, которые предъявляют к статистике различные области науки и практики, создаются пособия по геологи-ческой, медицинской, биологической, психологической статистике '.
В этом приложении даются простейшие методы статистики для пси-хологов. Все необходимые для их применения вычисления можно вы-полнять вручную или на компьютере. Уместное грамотное применение этих методов позволит практику и исследователю, во всяком случае проведя начальную обработку, получить общую картину того, что дают количественные результаты его исследований, оперативно проконт-ролировать ход исследований. В дальнейшем, если возникнет такая необходимость, материалы исследований могут быть переданы для более глубокой разработки специалисту-статистику на большой компьютер.
Статистические шкалы
Применение тех или других статистических методов определяется тем, к какой статистической шкале относится полученный материал. С. Стивенс предложил различать четыре статистические шкалы:
1. шкалу наименований (или номинальную);
2. шкалу порядка;
3. шкалу интервалов;
4. шкалу отношений.
Зная типические особенности каждой шкалы, нетрудно установить, к какой из них следует отнести подлежащий статистической обработ-ке материал.
Шкала наименований. К этой шкале относятся материалы, в ко-торых изучаемые объекты отличаются друг от друга по их качеству.
При обработке таких материалов нет никакой нужды в том, чтобы располагать эти объекты в каком-то порядке, исходя из их характери-стик. В принципе, объекты можно располагать в любой последователь-ности.
Вот пример: изучается состав международной научной конференции. Среди участников есть французы, англичане, датчане, немцы и русские. Имеет ли значение порядок, в котором будут расположены участники при изучении состава конференции? Можно расположить их по алфавиту, это удобно, но ясно, что никакого принципиального значения в этом распо-ложении нет. При переводе этих материалов на другой язык (а значит и на другой алфавит) этот порядок будет нарушен. Можно расположить национальные группы по числу участников. Но при сравнении этого ма-териала с материалом другой конференции найдем, что вряд ли этот порядок окажется таким же. Отнесенные к шкале наименований объек-ты можно размещать в любой последовательности в зависимости от цели исследования.
При статистической обработке такого рода материалов нужно счи-таться с тем, каким числом единиц представлен каждый объект. Име-ются весьма эффективные статистические методы, позволяющие по этим числовым данным прийти к научно значимым выводам (напри-мер, метод хи-квадрат).
Шкала порядка. Если в шкале наименований порядок следования изучаемых объектов практически не играет никакой роли, то в шкале порядка -- это видно из ее названия -- именно на эту последователь-ность переключается все внимание.
К этой шкале в статистике относят такие исследовательские ма-териалы, в которых рассмотрению подлежат объекты, принадлежа-щие к одному или нескольким классам, но отличающиеся при их сравне-нии одного с другим -- «больше-меньше», «выше-ниже»- и т. п.
Проще всего показать типические особенности шкалы порядка, если об-ратиться к публикуемым итогам любых спортивных соревнований. В этих итогах последовательно перечисляются участники, занявшие соответ-ственно первое, второе, третье и следующие по порядку места. Но в этой информации об итогах соревнований нередко отсутствуют или отходят на второй план сведения о фактических достижениях спортсменов, а на первый план ставятся их порядковые места.
Допустим, шахматист Д. занял в соревнованиях первое место. Како-вы же его достижения? Оказывается, он набрал 12 очков. Шахматист Е. занял второе место. Его достижение -- 10 очков. Третье место занял Ж. с восемью очками, четвертое -- 3. с шестью очками и т. д. В сообщениях о соревновании разница в достижениях при размещении шахматистов отходит на второй план, а на первом остаются их порядковые места. В том, что именно порядковому месту отводится главное значение, есть свой смысл. В самом деле, в нашем примере З. набрал шесть, а Д. -- 12 очков. Это абсолютные их достижения -- выигранные ими партии. Если попытаться истолковать эту разницу в достижениях чисто арифме-тически, то пришлось бы признать, что 3. играет вдвое хуже, чем Д. Но с этим нельзя согласиться. Обстоятельства соревнований не всегда про-сты, как не всегда просто и то, как провел их тот или другой участник. Поэтому, воздерживаясь от арифметической абсолютизации, ограничи-ваются тем, что устанавливают: шахматист 3. отстает от занявшего пер-вое место Д. на три порядковых места.
Шкала интервалов.К ней относятся такие материалы, в которых дана количественная оценка изучаемого объекта в фиксированных еди-ницах.
Вернемся к опытам, которые провел психолог с Сашей. В опытах учиты-валось, сколько точек могут поставить, работая с максимально доступ-ной им скоростью, сам Саша и каждый из его сверстников. Оценочными единицами в опытах служило число точек. Подсчитав их, исследователь получил то абсолютное число точек, которое оказалось возможным по-ставить за отведенное время каждому участнику опытов. Главная труд-ность при отнесении материалов к шкале интервалов состоит в том, что нужно располагать такой единицей, которая была бы при всех повтор-ных измерениях тождественной самой себе, т. е. одинаковой и неизмен-ной. В примере с шахматистами (шкала порядка) такой единицы вообще не существует.
В самом деле, учитывается число партий, выигранных каждым участ-ником соревнований. Но ясно, что партии далеко не одинаковы. Воз-можно, что участник соревнований, занявший четвертое место -- он выиграл шесть партий, -- выиграл труднейшую партию у самого лидера! Но в окончательных итогах как бы принимается, что все выигранные партии одинаковы. В действительности же этого нет. Поэтому при рабо-те с подобными материалами уместно их оценивать в соответствии с требованиями шкалы порядка, а не шкалы интервалов. Материалы, соответствующие шкале интервалов, должны иметь единицу измерения.
Шкала отношений.К этой шкале относятся материалы, в которых учитываются не только число фиксированных единиц, как в шкале ин-тервалов, но и отношения полученных суммарных итогов между собой. Чтобы работать с такими отношениями, нужно иметь некую абсолют-ную точку, от которой и ведется отсчет. При изучении психологиче-ских объектов эта шкала практически неприменима.
О параметрических и непараметрических методах статистики
Приступая к статистической обработке своих исследований, психо-лог должен решить, какие методы ему более подходят по особенностям его материала -- параметрические или непараметрические. Раз-личие между ними легко понять.
Ранее уже говорилось об измерении двигательной скорости детей-шес-тиклассников.
Как обработать эти данные?
Нужно записать все произведенные измерения -- в данном случае это будет число точек, поставленных каждым испытуемым, -- затем вычис-лить для каждого испытуемого среднее арифметическое по его резуль-татам. После этого расположить все данные в их последовательности, например начиная с наименьших к наибольшим. Для облегчения обозри-мости этих данных их обычно объединяют в группы; в этом случае можно объединить по 5-9 измерений в группе. Вообще же при таком объеди-нении желательно, если общее число случаев не более ста, чтобы общее число групп было порядка двенадцати.
Далее нужно установить, сколько раз в опытах встретились числовые значения, соответствующие каждой группе. Сделав это, для каждой группы записать ее численность. Полученные в такой таблице данные носят назва-ние распределения численностей или частот. Рекомендуется предста-вить это распределение в виде диаграммы, на которой изображается по-лигон распределения, или гистограмма распределения. Контуры этого полигона помогут решить вопрос о статистических методах обработки.
Нередко эти контуры напоминают контуры колокола, с наивысшей точкой в центре полигона и с симметричными ветвями, отходящими в ту и другую сторону. Такой контур соответствует кривой нормально-го распределения. Это понятие было введено в математическую ста-тистику К. Ф. Гауссом (1777-1855), поэтому кривую именуют также кривой Гаусса. Он же дал математическое описание этой кривой. Для построения кривой Гаусса (или кривой нормального распределения) теоретически требуется бесчисленное количество случаев. Практиче-ски же приходится довольствоваться тем фактическим материалом, который накоплен в исследовании. Если данные, которыми распола-гает исследователь, при их внимательном рассмотрении или после пе-реноса их на диаграмму лишь в незначительной степени расходятся с кривой нормального распределения, то это дает право исследователю применять в статистической обработке параметрические методы, ис-ходные положения которых основываются на нормальной кривой рас-пределения Гаусса.
Нормальное распределение называют параметрическим потому, что для построения и анализа кривой Гаусса достаточно иметь всего два параметра: среднее значение, которое должно соответствовать высоте перпендикуляра, восстановленного в центре кривой, и так называемое среднее квадратическое, или стандартное, отклонение величины, ха-рактеризующей рассеивание значений вокруг среднего значения; о спо-собах вычисления той и другой величины будет рассказано ниже.
Параметрические методы обладают для исследователя многими преимуществами, но нельзя забывать о том, что применение их право-мерно только тогда, когда обрабатываемые данные показывают рас-пределение, лишь несущественно отличающееся от гауссовского.
При невозможности применить параметрические надлежит обра-титься к непараметрическим методам. Эти методы успешно разраба-тывались в последние 3-4 десятилетия, и их разработка была вызвана прежде всего потребностями ряда наук, в частности психологии. Они показали свою высокую эффективность. Вместе с тем они не требуют сложной вычислительной работы.
Современному психологу-исследователю нужно исходить из того, что «...имеется большое количество данных, которые либо вообще не поддаются анализу с помощью кривой нормального распределения, либо не удовлетворяют основным предпосылкам, необходимым для ее использования».
Генеральная совокупность и выборка. Психологу постоянно при-ходится иметь дело с этими двумя понятиями.
Генеральная совокупность, или просто совокупность, -- это мно-жество достаточно большого объема, все элементы которого обла-дают какими-то общими признаками.
Так, все подростки-шестиклассники 12 лет (от 11,5 до 12,5) образу-ют совокупность. Дети того же возраста, но не обучающиеся в школе или же обучающиеся, но не в шестых классах, не подлежат включению в эту совокупность.
В ходе конкретизации проблем своего исследования психологу не-избежно придется обозначить границы изучаемой им совокупности.
Следует ли включать в изучаемую совокупность детей того же воз-раста, но обучающихся в колледжах, гимназиях, лицеях и других по-добных учебных заведениях?
В ответе на этот и другие такие же вопросы может помочь статистика.
В подавляющем большинстве случаев исследователь не в состоя-нии охватить в изучении всю совокупность. Приходится, хотя это и связано с некоторой утратой информации, взять для изучения лишь часть совокупности, ее и называют выборкой. Задача исследователя заключается в том, чтобы подобрать такую выборку, которая репре-зентировала бы, представляла совокупность; другими словами, при-знаки элементов совокупности должны быть представлены в выборке. Это достигается, прежде всего, использованием случайной выборки из совокупности. Составить такую выборку, в точности повторяющую все разнообразные сочетания признаков, которые имеются в элемен-тах совокупности, вряд ли возможно. Поэтому некоторые потери в информации оказываются неизбежными. Важно, чтобы были сохра-нены в выборке существенные с точки зрения данного исследования признаки совокупности. Возможны случаи, и для их обнаружения есть статистические методы, когда задачи исследования требуют создания двух выборок одной совокупности; при этом нужно установить, не взя-ты ли выборки из равных совокупностей. Эти и другие подобные ка-зусы нужно иметь в виду психологу при обработке результатов выбо-рочных исследований.
Следует рассмотреть типы задач, с которыми чаще всего имеет дело психолог. Соответственно приводятся и статистические методы, которые приложимы для обработки психологических материалов, на-правленных на решение этих задач.
Первый тип задач. Данный тип задач представлен в ситуации, когда психологу нужно дать сжатую и достаточно информативную харак-теристику психологических особенностей какой-то выборки, например школьников определенного класса. Чтобы подойти к решению этой задачи, необходимо располагать; результатами диагностических испы-таний; эти испытания, разумеется, следует заранее спланировать так, чтобы они давали информацию о тех особенностях группы, которые в этом конкретном случае интересуют психолога. Это могут быть осо-бенности умственного развития, психофизиологические особенности, данные об изменении работоспособности и т. д.
Получив все экспериментальные результаты и материалы наблю-дений, следует подумать о том, как их подать пользователю в компакт-ном виде, чтобы при этом свести к минимуму потерю информации. В перечне статистических методов, используемых при решении подоб-ных задач, обычно находят свое место и параметрические, и непара-метрические методы; о возможностях применения тех и других, как было сказано выше, судят по самому полученному материалу. Об этих статистических методах и их использовании пойдет речь далее.
Второй тип задач. Это, пожалуй, наиболее часто встречающиеся задачи в исследовательской и практической деятельности психолога: сравниваются между собой несколько выборок, чтобы установить, яв-ляются ли выборки независимыми или принадлежат одной и той же совокупности. Так, проведя эксперименты в восьмых классах двух раз-личных школ, психолог сравнивает эти выборки между собой.
К этому же типу относятся задачи с определением тесноты связи двух рядов показателей, полученных на одной и той же выборке; в та-кой обработке чаще всего применяют метод корреляций.
Третий тип задач. Это задачи, в которых обработке подлежат вре-менные ряды, ряды, в которых расположены показатели, меняющиеся во времени; их называют также динамическими рядами. В предшеству-ющих типах задач фактор времени не принимался во внимание, и ма-териал анализировался так, как будто он весь поступил в руки иссле-дователя в одно и то же время. Такое допущение можно оправдать тем, что за тот короткий период времени, который был затрачен на собира-ние материала, он не претерпел существенных перемен. Но психологу приходится работать и с таким материалом, в котором наибольший интерес представляют как раз его изменения во времени. Допустим, психолог намерен изучить изменение работоспособности школьников в течение учебной четверти. В этом случае информативными будут показатели, по которым можно судить о динамике работоспособнос-ти. Берясь за такой материал, психолог должен понимать, что при ана-лизе динамических рядов нет смысла пользоваться средним арифме-тическим ряда, так как среднее арифметическое замаскирует нужную информацию о динамике.
В основном тексте книги упоминалось о лонгитюдинальном иссле-довании, т. е. таком, в котором однообразный по содержанию психоло-гический материал по одной выборке собирается в течение длитель-ного времени. Показатели лонгитюда -- это также динамические ряды, и при их обработке следует пользоваться методами, предназначенны-ми для таких рядов.
Четвертый тип задач. Это задачи, возникающие перед психологом, за-нимающимся конструированием диагностических методик, проверкой и обработкой результатов их применения. Отчасти об этих задачах уже говорилось в других главах, но не уделялось внимания специально ста-тистике. Психологическая диагностика, в особенности тестология, имеет целый ряд канонических правил, применение которых должно обеспечивать высокое качество информации, получаемой посредством диагностических методик. Так, методика должна быть надежной, гомогенной, валидной. По упрочившимся в тестологии правилам все эти свойства проверяются статистическими методами.
Выше были перечислены типы задач, с которыми чаще всего встре-чаются психологи. Теперь мы перейдем к изложению конкретных статистических методов, способствующих успешному решению пере-численных задач. Но прежде следует высказать некоторые соображе-ния о возможностях статистики в проведении психологического ис-следования.
Назначение статистики состоит в том, чтобы извлечь из этих материалов боль-ше полезной информации. Вместе с тем статистика показывает, что эта информация не случайна и что добытые данные имеют определен-ную и значимую вероятность.
Статистические методы раскрывают связи между изучаемыми яв-лениями. Однако необходимо твердо знать, что, как бы ни была высока вероятность таких связей, они не дают права исследователю признать их причинно-следственными отношениями. Статистика, например, утверждает, что существует значимая связь между двигательной ско-ростью и игрой в теннис. Но отсюда еще не вытекает, будто двигатель-ная скорость и есть причина успешной игры. Нельзя, по крайней мере в некоторых случаях, исключить и того, что сама двигательная ско-рость явилась следствием успешной игры.
Чтобы подтвердить или отвергнуть существование причинно-след-ственных отношений, исследователю зачастую приходится продумы-вать целые серии экспериментов. Если они будут правильно постро-ены и проведены, то статистика поможет извлечь из результатов этих экспериментов информацию, которая необходима исследователю, что-бы либо обосновать и подтвердить свою гипотезу, либо признать ее недоказанной.
Статистические методы, примеры их применения для принятия решения
Первый тип задач
Допустим, что школьному психологу нужно представить краткую информацию о развитии психомоторных функций учащихся шестых классов. В этих классах обучается 50 учеников. В процессе выполнения своей программы психолог провел диагностическое изучение дви-гательной скорости, применив ранее описанную методику (описание дано на первой странице данного раздела).
Для реализации своей программы психологу надлежало получить количественные характеристики, свидетельствующие о состоянии изучаемой функции -- ее центральной тенденции, величины, показы-вающей размах колебания, в пределах которого находятся данные от-дельных учеников, и то, как распределяются эти данные. Какими ме-тодами вести обработку, зависит от того, в какой статистической шкале измерены значения исследуемого признака. Визуальное озна-комление с полученными данными показывает, что возможно вычис-ление среднего арифметического, выражающего центральную тен-денцию, и среднеквадратического отклонения, показывающего размах и особенности варьирования экспериментальных результатов.
Нельзя ограничиться вычислением только среднего арифметиче-ского, так как оно не дает полных сведений об изучаемой выборке.
Вот пример.
В одном купе вагона поместилась бабушка 60 лет с четырьмя внука-ми: один -- 4 лет, двое -- по 5 лет и один -- 6 лет. Среднее арифметиче-ское возраста всех пассажиров этого купе 80/5= 16.
В другом купе расположилась компания молодежи: двое -- 15-летних, один -- 16-летний и двое -- 17-летних. Средний возраст пассажиров это-го купе также равен 80/5= 16. Таким образом, по средним арифметическим пассажиры этих купе как бы и не отличаются. Но если обратиться к особенностям варьирования, то сразу можно установить, что в одном купе возраст пассажиров варьируется в пределах 56 единиц, а во вто-ром -- в пределах 2.
Для вычисления среднего арифметического применяется формула:
" х = ? х / n
а для среднеквадратического отклонения формула:
у = ?? (х - " х )2 / n
В этих формулах "х означает среднее арифметическое, х -- каждую величину изучаемого ряда, ? означает сумму; у означает среднеквадратическое отклонение; буквой n обозначают число членов изучаемо-го ряда.
Ниже представлен весь ход его обработки.
В опытах участвовало 50 испытуемых. Каждый из них выполнил 25 проб, по 1 мин каждая. Вычислено среднее для каждого испытуемого. Полу-ченный ряд упорядочен, и все индивидуальные результаты представле-ны в последовательности от меньшего к большему.
Для удобства дальнейшей обработки эти первичные данные соеди-нены в группы. Благодаря группировке отчетливее выступает присущее данному ряду распределение величин и их численностей. Отчасти упро-щается и вычисление среднего арифметического и среднеквадратиче-ского отклонения. Этим компенсируется количественное искажение ин-формации, неизбежное при вычислениях на сгруппированных данных.
При выборе группового интервала следует принять во внимание такие соображения. Если ряд не очень велик, например содержит до 100 элементов, то и число групп не должно быть очень велико, напри-мер порядка 8-12. Желательно, чтобы при группировании начальная величина -- при соблюдении последовательности от меньшей величи-ны к большей -- была меньше самой меньшей величины ряда, а самая большая -- больше самой большой величины изучаемого ряда. Если ряд, как в данном случае, начинается с 85, группирование нужно на-чать с меньшей величины, а поскольку ряд завершается числом 158, то и группирование должно завершаться большей величиной. В ряду, который нами изучается, с учетом высказанных соображений можно выбрать групповой интервал в 9 единиц и произвести разбивку ряда на группы, начав с 83. Тогда последняя группа будет завершаться ве-личиной, превышающей значение последней величины ряда (т. е. 159). Число групп будет равно 9. В табл. 1 представлены группы в их после-довательности и все другие величины для вычисления среднего ариф-метического и среднеквадратического отклонения. Таблица состоит из 8 столбцов.
1-й столбец -- группы, полученные после разбиения изучаемого ряда.
2-й столбец -- средние значения интервалов по каждой группе.
3-й столбец показывает результаты «ручной» разноски величин ряда или иксов (каждая величина занесена в соответствующую ее зна-чению группу в виде черточки).
4-й столбец -- итог подсчета результатов разноски.
5-й столбец -- произведения величин 2-го столбца на величины 4-го столбца по строчкам. Итоги 4-го и 5-го столбцов дают суммы, необхо-димые для вычисления среднего арифметического.
Таблица 1
Вычисление среднего арифметического и среднеквадратического
отклонения
Границы интерва-лов
Средние интер-валов х
Резуль-тат
разно-ски
Итоги
разно-ски
f *х
х - "х
(х - " х )2
f *(х - "х)2
1
2
3
4
5
6
7
8
83-91
87
I
1
87
-36
1296
1296
92-100
96
3
288
-27
729
2187
101-109
105
3
315
-18
324
972
110-118
114
10
1140
-9
81
810
119-127
123
16
1968
0
0
0
128-136
132
9
1188
9
81
729
137-145
141
5
705
18
324
1620
146-154
150
2
300
27
729
1458
155-163
159
I
1
159
36
1296
1296
n = 50 ; ?f * х = 6150 ; ?f *(х - " х )2 = 10368
6-й столбец показывает построчные разности между значениями х 2-го столбца и средним арифметическим "х.
7-й столбец -- квадрат этих разностей.
8-й столбец показывает построчные произведения значений 4-го и 7-го столбцов. Суммирование величин этого столбца дает итог, не-обходимый для вычисления среднеквадратического отклонения.
Включение буквы f, означающей, насколько часто встречалась та или другая величина, ничего не изменяет в формулах среднего ариф-метического и среднеквадратического отклонения. Поэтому формулы
" х = ?х/ n = ?f *х/ n
Как и формулы вполне тождественны.
у = ?? (х - " х )2 / n = v?f * (х - " х )2 / n
Остается показать, как вычисляются по формулам среднее арифме-тическое и среднеквадратическое отклонение. Обратимся к величи-нам, полученным в табл. 1:
" х = 6150/50 = 123
При составлении табл. 1 это число было заранее вычислено, без него нельзя было бы получить числовые значения 6, 7 и 8-го столбцов таблицы.
у = ?10368/50 = ?207,3 = 14,4
При обработке изучаемого ряда оказалось возможным применение параметрического метода; визуально можно заметить, что распределе-ние численностей приближается к нормальному.
Нормальное распределение обладает некоторыми весьма полезны-ми для исследователя свойствами. Так, в границах "х ± у находится примерно 68 % всего ряда или всей выборки. В границах "х ± 2у нахо-дится примерно 95 %, а в границах "х ± 3у - 99,7 % выборки. В практи-ке исследований часто берут границы "х ± 2/3у. В этих границах при нормальном распределении будут находиться 50 % выборки; распре-деление это симметрично, поэтому 25 % окажутся ниже, а 25 % выше гра-ниц "х ± 2/3у. Все эти расчеты не требуют никакой дополнительной проверки при условии, что изучаемый ряд имеет нормальное распре-деление, а число элементов в нем велико, порядка нескольких сотен или тысяч.
Для рассматриваемого примера необходимо также вычислить ко-эффициент вариации по формуле:
V = у/ "х ·100 %.
В примере, который был рассмотрен выше,
V = 14,4/123 ·100% = 11,7%.
Выполнив все эти вычисления, психолог может представить инфор-мацию об изучении двигательной скорости с помощью примененной методики в шестых классах. Согласно результатам изучения в шестых классах, получены:
· среднее арифметическое -- 123;
· среднеквадратическое отклонение -- 14,4;
· коэффициент вариации -- 11,7 %.
Если значения изучаемого признака измерены в порядковой шкале, то в качестве меры центральной тенденции выступает медиана, а ха-рактеристикой диапазона варьирования выступает среднее кварталь-ное отклонение.
Вот пример.
После проведения диагностических испытаний уровня умственного развития учеников шестого класса все полученные данные были упоря-дочены, т. е. расположены в последовательности от меньшей величины к большей. Испытания проходили 18 учащихся. Буквами обозначены уча-щиеся, числами -- полученные ими баллы по тесту, столбцы под буква-ми R -- ранги (табл. 2).
Процедура ранжирования состоит в следующем. Все числа ряда в их последовательности получают по своим порядковым местам присва-иваемые им ранги. Если какие-нибудь числа повторяются, то всем по-вторяющимся числам присваивается один и тот же ранг -- средний из общей суммы занятых этими числами мест. Так, числу «28» в изучаемом ряду присвоен ранг «2». Затем следуют трижды повторяющиеся числа «39». На них приходятся занятые ими ранговые места «3», «4», «5». По-этому этим числам присваивается один и тот же средний ранг, в данном случае -- «4». Поскольку места до 5 включительно заняты, то следующее число получает ранг «6» и т. д.
Таблица 2
Ранжирование результатов
Учащиеся
Баллы по тесту
Ранг (R)
Учащиеся
Баллы по тесту
Ранг (R)
А
25
1
К
68
10
Б
28
2
Л
69
11,5
В
39
4
м
69
11,5
Г
39
4
н
70
14,5
д
39
4
О
70
14,5
Е
45
6
п
70
14,5
Ж
50
7
р
70
14,5
3
52
8,5
с
74
17,5
И
52
8,5
т
74
17,5
При обработке ряда, не имеющего признаков нормального распре-деления, иначе -- непараметрического ряда, -- для величины, которая выражала бы его центральную тенденцию, более всего пригодна меди-ана, т. е. величина, расположенная в середине ряда. Ее определяют по срединному рангу по формуле.
Медиана ряда определяется по ранговой медиане:
MeR = (n +1)/2
где n -- число членов ряда.
Возьмем, к примеру, ряд в семь членов: 3-5-6-7-9-10-11.
Проранжировав этот ряд, имеем:
1-2-3-4-5-6-7.
Ранговая медиана
MeR = (7 + 1)/2 = 4 ,
дает медиану рассматриваемого ряда Me = 7.
Возьмем ряд в восемь членов: 3-5-6-7-9-10-11-12.
Проранжировав этот ряд, имеем:
1-2-3-4-5-6-7-8.
Ранговая медиана в этом ряду равна:
MeR = (8+1)/2 = 4,5
Этому рангу соответствует середина между двумя величинами, име-ющими ранг 4 и ранг 5, т. е. между 7 и 9. Медиана этого ряда равна:
Me = (7 + 9)/2 =8
Следует обратить внимание на то, что величины 8 в составе ряда пет, но таково значение медианы этого ряда.
Вернемся к изучаемому ряду. Он состоит из 18 членов. Его ранго-вая медиана равна:
MeR = (18+1)/2= 9,5.
Она расположится между 9-й и 10-й величиной ряда. 9-я величина ряда - 52, 10-я величина ряда - 68. Медиана занимает срединное ме-сто между этими величинами, следовательно:
Me = (52 + 68)/2 = 60
По обе стороны от этой величины находится по 50% величин ряда. Характеристику распределения численностей в непараметрическом ряду можно получить из отношения его квартилей. Квартилью назы-вается величина, отграничивающая 1/4 всех величин ряда. Квартиль первая - ее обозначение Q1- вычисляется по формуле:
Q1 = R1 + Rn/2(лев) / 2
Это полусумма первого и последнего рангов первой, левой от меди-аны половины ряда; квартиль третья, обозначаемая Q3, вычисляется, по формуле:
Q3 = Rn/2 + Rn/2(прав) / 2
т. е. как полусумма первого и последнего рангов второй, правой от ме-дианы половины ряда. Берутся порядковые значения рангов по их пос-ледовательности в ряду. В обрабатываемом ряду
Q1 = (1+9)/2 = 5, Q3 = (10+18)/2 = 14
Рангу 5 в этом ряду соответствует величина 39, а рангу 14 - вели-чина 70.
Для характеристики распределения в непараметрическом ряду вы-числяется среднее квартальное отклонение, обозначаемое Q.
Формула для Q такова:
Q = (Q3 - Q1)/2
В обрабатываемом ряду Q3 = 70, a Q1 = 39, следовательно:
Q = (70 - 39)/2 =15,5.
Были рассмотрены статистическая обработка параметрического ряда ("х и у) и статистическая обработка непараметрического ряда (Me и Q). Параметрический ряд относится к шкале интервалов, непараметричес-кий -- к шкале порядка. Но встречаются также ряды, относящиеся к шкале наименований. Наиболее краткая, но малоинформативная ха-рактеристика такого ряда может быть получена с помощью моды -- величины в ряду, имеющей наибольшую численность из числа п -- чле-нов ряда. Следует заметить, что моду можно лишь условно считать вы-ражением центральной тенденции в ряду, относящемуся к шкале наи-менований. Она выражает наиболее типичную величину ряда.
Рассмотрим пример, где речь идет об участниках некой конференции; в их числе 3 англичанина, 2 датчанина, 5 немцев, 1 русский и 2 фран-цуза. Мода в данном ряду приходится на участников конференции -- немцев. Число членов ряда -- 13, а мода Мо = 5.